

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2023 IEEE

A method based on Behavior Driven Development

(BDD) and System-Theoretic Process Analysis

(STPA) for verifying security requirements in critical

software systems

Vitor Rubatino

Computer Science Department

Universidade Federal de Alfenas

(UNIFAL-MG)

Alfenas, Brazil

vitor.rubatino@sou.unifal-

mg.edu.br

Alice Batista

Computer Science Department

Universidade Federal de Alfenas

(UNIFAL-MG)

Alfenas, Brazil

alice.nogueira@sou.unifal-

mg.edu.br

Fellipe Guilherme Rey de Souza

Computer Science Department

Universidade Federal de Alfenas

(UNIFAL-MG)

Alfenas, Brazil

fellipeguilhermerey@gmail.com

Rodrigo Martins Pagliares

Computer Science Department

Universidade Federal de Alfenas

(UNIFAL-MG)

Alfenas, Brazil

rodrigo.pagliares@unifal-

mg.edu.br

Abstract— Security failures in critical software systems can

lead to severe economic, environmental, and human consequences.

To ensure the security of these systems, it is necessary to identify

and document security requirements as part of the software

development process. Although the System-Theoretic Process

Analysis (STPA) technique can be used to identify security

requirements, it is challenging to verify their accuracy,

completeness, and consistency. We propose a method based on

STPA and Behavior Driven Development (BDD) for verifying

software security requirements. BDD establishes a common

language between business analysts and software developers. We

evaluate the method through examples related to preserving the

Confidentiality, Integrity, and Availability (CIA) of information.

The application of the method to the examples produces

automated test cases written using Gherkin syntax, which are used

to verify the requirements in the examples. The method proposed

in this work has the potential to generate automated test cases that

can be used to verify whether the software solution built meets the

security requirements identified through an STPA analysis.

Keywords— STAMP; STPA; BDD; Security requirements;

Requirements verification.

I. INTRODUCTION

Our society has become increasingly dependent on critical
software systems, such as those in energy, transportation,
financial, healthcare, and communication. Security failures in
these systems can result in serious consequences, including
economic losses, human casualties, and environmental impacts
[1] [2]. The development of critical software systems demands
that security requirements be identified and documented as part
of the software development process.

Verification of security requirements is crucial to ensure that
the software meets its security objectives. This is accomplished
by assessing the design and implementation of the software in
relation to the specified security requirements, aiming to verify
their completeness, consistency, and accuracy. However, due to

the lack of systematic approaches, conducting security
verification of critical software systems is a task that demands a
significant amount of time and effort [3].

We propose a method for verifying software security
requirements in critical systems. The method is based on STPA
(Systems-Theoretic Process Analysis) and BDD (Behavior-
Driven Development).

STPA is a technique for analyzing hazards and
vulnerabilities in critical systems. This technique can be used to
facilitate the identification safety/security requirements and test
cases [2], enabling organizations to identify potential
vulnerabilities before they can be exploited by malicious actors.
While STPA technique can be used to identify security
requirements, it is challenging to verify the completeness,
consistency, and accuracy of the identified requirements.

BDD is a technique that aims to establish a common
language between business analysts and software developers.
One of the practices of BDD is the creation of test cases in
natural language that describe the expected behavior of the
software [4].

The remainder of this work is organized as follows: in
Section II, the literature review and related work are presented;
Section III introduces our method for verifying security
requirements in critical software systems. Examples of the
method's use are discussed in Section IV; Section V summarizes
the results obtained in this work; discussion, conclusions and
future work are presented in Sections VI and VII, respectively.

II. LITERATURE REVIEW AND RELATED WORK

Wang and Wagner [5] present a study, in the context of agile
methods, to assess the use of BDD compared to the traditional
User Acceptance Testing (UAT) aiming safety verification with
STPA. The results of their work indicate that BDD is more
effective than UAT for verifying safety requirements, taking
into consideration the effectiveness of communication.

However, productivity, test rigor, and fault detection
effectiveness did not show statistically significant differences.

Hirata et al. [3] propose a systematic approach for the semi-
automatic generation of safety requirements and software test
cases for critical systems. The authors combine requirements
identified through STPA with a model-based approach called
CoFI (Conformance and Fault Injection) for generating test
cases. The use of the approach is exemplified with an insulin
pump controlled by a smartphone system. Differently from their
work, we utilize STPA analysis combined with BDD to create
test scenarios and subsequently generate test cases.

Okubo et al. [6] address a common issue: defining the
necessary security levels and privacy behaviors, as well as
acceptance criteria for BDD, during the use of agile software
development practices. The proposal of the method called
BehaveSafe makes use of a Threat and Countermeasure graph
(T&C graph) to establish acceptance criteria. The efficiency of
this method was evaluated through a web-based system.
Contrary to their method, we propose utilizing components of
STPA risk analysis before practicing BDD.

Alves et al. [7] propose an approach for verification and
validation of essential behaviors of a system to ensure its
reliability. The approach uses state diagrams to represent the
dynamic behavior of the system and runtime monitoring data.
Both the state diagrams and monitoring data are verified and
validated with test scenarios written using the Junit test
framework. Meanwhile in our method, for verification, we use
BDD, which not only covers essential system behaviors but also
integrates business rules with programming language, focusing on
software behavior.

Ghazel M. et al. [8] present an approach for specifying
temporal requirements in complex systems. They also propose a
verification method that integrates the specification process,
enabling requirement verification. The authors present a case
study in the field of railway operations. Contrary to your
approach, the use of STPA results in our method simplifies the
creation of test scenarios to verify security requirements, as
through this feature, it becomes viable to execute test scenario
mapping using the language Gherkin.

 Purkayastha et al. [9] describe the use of a unit testing
framework in Python to implement a formal security testing
method. The authors employ a metric named Common
Vulnerability Scoring System (CVSS) to represent the security
state of a deployed system. The work outlines a series of BDD
scripts for testing authentication and availability in an Electronic
Health Records System. They proposed that BDD test scenarios
written in Gherkin syntax serve as project documentation and to
automate the tests. In a different way, we use STPA's UCAs and
controller constraints to map to Gherkin syntax.

Tsoukalas et al. [10] present a mechanism that automates the
identification of key concepts in security requirements
expressed in natural language through syntactic and semantic
analysis. Additionally, the authors propose a mechanism for the
verification and validation of requirements by comparing them
to a list of established security requirements, identifying
inconsistencies, and suggesting refinements. Both mechanisms
are implemented as standalone web services and are

demonstrated through test cases aiming at facilitating software
security specification and assurance. Meanwhile, we propose a
method where the verification using BDD allows anyone, from
engineers to product owners, to write BDD scenarios, thereby
further enhancing the desired system behavior.

The work of Wang and Wagner [5] is the closest to our
method. Similar to our work, the approach used by the authors
combines the results of an STPA analysis with BDD for
requirement verification. However, our work differs from Wang
and Wagner's in several aspects, including our focus on security
requirements (not safety). Additionally, in Wang and Wagner's
work, STPA analysis is used as an artifact developed during
their approach, while in our work, we adopt STPA analysis as
input for our method, which provides more flexibility in its
applicability. Furthermore, our method incorporates a set of
resources and tool support that assist in the automation and
verification of test cases, as described in Section V.

III. A METHOD FOR VERIFYING SOFTWARE

SECURITY REQUIREMENTS IN CRITICAL SYSTEMS

 Figure 3.1 presents the method proposed in this work. The
method is divided into two main stages: security analysis
(STPA) and security verification (BDD). Each stage, in turn, is
divided into one or more activities that consume and produce
artifacts and are performed by roles.

Figure 3.1 Method based on BDD and STPA for verifying security requirements
in critical software systems

The role Security Analyst performs the first activity (Collect
STPA findings for the method) which receives as input the
artifact "STPA Analysis". The activity extracts, from steps 2 and
3 of the STPA Analysis, the information relevant to the method
(process model variables from step 2 and UCAs and controller
constraints from step 3). The activity produces the STPA
findings artifact as output.

In the second activity, called "Create test scenarios", a
meeting known as “Three amigos" takes place. The Business
Analyst, Security Analyst and Tester roles participate in the
meeting with the objective of generating BDD test scenarios

written in the Gherkin syntax. The scenarios represent events
that possibly trigger the UCAs identified in the previous activity.

 In "Three Amigos" meeting, each role plays a crucial role,
leveraging three distinct perspectives. The security analyst
contributes insight into security requirements, the developer
assesses implementation feasibility, while the business analyst
ensures the need to meet project requirements.

 The development of test scenarios uses Gherkin syntax. To
this end, we use each UCA and corresponding controller
constraint within the STPA findings. We decompose the UCAs
into 5 parts, as defined by Leveson and Thomas [2] (see top of
Figure 3.2). Each of the parts of a UCA is mapped to Gherkin
syntax (Given, When, Then) as follows: 'Given [Context], When
[Source + Type + Control Action], Then [Controller
Constraint]'. This mapping is illustrated at the bottom part of
Figure 3.2.

The “Context” is derived from the UCA description and is
inserted after the ‘Given’ clause of Gherkin syntax, establishing
the initial conditions for the test scenario. The 'Source' and
'Type' are combined with the 'Control Action' and are declared
after the 'When' clause, indicating the specific action being
declared. Lastly, the 'Then' clause is followed by the 'Controller
constraint', describing the expected behavior of the system after
executing the test scenario.

Figure 3.2 Mapping UCAs and Controller constraints to Gherkin Syntax

 The next activity in our approach, named 'Create test cases',
is performed by the Tester based on the test scenarios previously
created in the second activity. In this activity, ‘Test cases’ are
produced as output artifact.

 In the fourth activity, the Tester executes the test cases
created in the previous activity. This activity produces the
artifact "Test results", which is made up of 'Tests that passed',
and 'Tests that failed'.

 In the next activity “Analyze test results”, we analyze the
results of previously executed tests. When 'Failed Tests' are
identified, it is necessary to proceed to the 'Modify STPA
analysis' activity, to correct the inconsistencies found. Then the
cycle begins again, going through all method activities, until all
tests are successful and satisfied.

IV. EXAMPLES

In this section, we present two examples to verify the
feasibility of the proposed method. The purpose of these
examples is to illustrate how we can use our method to verify
security requirements.

For both examples, we performed an STPA analysis to be
used as input for the first activity of our method (see Figure 3.1).
In particular, the STPA analysis created focuses on issues

associated with preserving the Confidentiality, Integrity, and
Availability (CIA) of information [11].

The examples illustrate a role-based, user authentication and
authorization system. We used our method to generate test cases
in order to guide the implementation of the system.

We chose the Java programming language and the Spring
Boot framework [12] to develop the system, subdivided into
logical layers (presentation, control, business, and persistence).
The implementation includes, in the presentation layer, a simple

web form with the username and password fields and a

button named login.

After implementation, we execute the fifth activity of our
method (Analyze test results) to verify whether the implemented
system complies with the security requirement and the test cases
obtained within activity 3 (Create test cases). In what follows,
we provide more details about the examples.

To better illustrate the examples, we show in Figure 4.1 the
STPA control structure used as input for the first activity of our
method. It has a controlled process (Repository) and four
controllers: User, Login Controller, Authenticator, and
Authorizer. The User controller is responsible for issuing the
control action "provide credentials" to try to gain access to the

system. Therefore, it sends the variables "username" and

"password" for validation in the Repository. The Login
Controller is responsible for intermediating access between the
User and Authenticator controllers through the "request access"
control action. The Authenticator is in charge of performing
authentication through the "fetch user" control action (validation

of the "username" and "password" stored in the
Repository).

Figure 4.1 Control Structure for user authentication and authorization system

 If both "username" and "password" provided are not
found in the Repository, the Authenticator returns to the Login
Controller the "access" feedback with the value "Not Allowed"
and the "role" feedback with the value "Unknown". If both
"username" and "password" are found in the Repository, the
Authenticator issues the "request role" control action to the

Authorizer, which in turn provides the "fetch role" control action
to the Repository. The Repository's response is the role found
for the provided "username". The Authorizer returns the content
of the "role" variable to the Authenticator, which in turn
completes the authorization, granting access to the Login

Controller and User (when "username" is "Valid",

"password" is "Valid" and " role" is "Admin" or "User")

or denying access (when "username" is "Valid",

"password" is "Valid" and "role" is "Unknown").

A. Confidentiality and integrity

 For this first example, by using the STPA analysis as input,
we derive the UCA's, Process Model Variables and Controller
Constraints, generating the STPA Findings Report artifact (first
activity of our method).

 We then use the STPA Findings Report, generated in the
previous activity, to create test scenarios using Ghekin syntax
(second activity). As a practical example, suppose the following
UCA: “Authenticator not provided request role when

username is valid and password is valid”, together with the
Controller Restriction: “Authenticator must provide request role

when username is valid and password is valid”. Figure
4.2 shows the test scenario created using Gherkin syntax for the
UCA used as example.

Figure 4.2 Example of converting a UCA and a Controller constraint into a test
scenario using Gherkin syntax

 In the third activity of our method, we develop the automated
test case for the previously created acceptance and integration
test scenario. This was accomplished using the Cucumber [13],
JUnit [14], and Selenium [15] frameworks, as exemplified in
Figure 4.3.

 The @Given annotation (Line 01) describes the method

usernameIsValidAndPasswordIsValid. This method
configures the Chrome browser and directs the navigation from
the home page to the system's login page (Lines 06 to 08). Then,
the method populates the username and password fields with
invalid values (Lines 11 to 14) and acts by locating and clicking
the login button present in the form (Lines 15-17).

 In lines 19 to 24, the @When annotation describes the
ongoing action: when the authenticator does not provide the
control action to request role. This action is represented by
clicking a button that grants access to the user-specific page,
provided the user has the "USER" role associated. In Line 23,

we ensure, through the verifyNoInteractions method,
that no interaction is occurring.

 The @Then annotation and subsequent code (Lines 25 to 37)
establish the desired system behavior to prevent UCA. In this
scenario, when the Authenticator does not provide the expected
action, the system must ensure the action is successfully
completed. To achieve this, we locate the user page access
button and complete the action by clicking on it. We then verify
if the current URL matches the expected URL, ensuring that the
user has gained access to the desired page.

 After executing the tests, we proceed to the Analyze Test
Results activity using the Gauntlt tool [16]. Our goal is to detect
failures that may indicate vulnerabilities in the system. These
identified failures serve as indicators that require a detailed
review of the STPA Analysis and possibly the STPA findings
report, as seen in Figure 3.1.

 To correct the failures identified in the fifth activity (Analyze
test results), we move on to the next activity (Modify STPA
Analysis), in which we undertake an iterative process. This
involves reviewing the STPA analysis and teste cases
implementation, making necessary modifications, and returning
to the first activity of the method, updating the STPA findings
report. From this report, we develop new test scenarios and test
cases, execute the tests, analyze the results, and make necessary
corrections. We repeat this cycle until no more test failures
occur.

01
02

03

04
05

06

07

08

09

10
11

12

13
14

15

16
17

18

19
20

21

22
23

24

25

26

27

28
29

30

31
32

33

34
35

36
37

@Given(“username is valid and password is valid”)
public void usernameIsValidAndPasswordIsValid(){

 ChromeOptions options = new ChromeOptions();

 driver = new ChromeDriver(options);
 driver.get("http://localhost:8080");

 WebElement authenticate =

 driver.findElement(By.id("login-button"));

 authenticate.click();

 WebElement username =

 driver.findElement(By.name("username"));
 WebElement username =

 driver.findElement(By.name("password"));

 username.sendKeys(“validUser@email.com”);
 password.sendKeys(“validPassword@123”);

 WebElement login =

 driver.findElement(By.id("login-button"));
 login.click();

}
@When(“authenticator not provided request role”)

public void notRequestRole(){

 driver.get("http://localhost:8080");

 WebElement mock = mock(WebElement.class);
 VerifyNoInteractions(mock);

}

@Then(“ authenticator must provided request role when

username is valid and password is valid”)

public void mustRequestRoel(){

 WebElement mock = mock(WebElement.class);
 driver.get("http://localhost:8080");

 WebElement user = driver.findElement(By.id("user"));

 user.click();
 String currentUrl = driver.getCurrentUrl();

 assertThat(currentUrl).isEqualTo("http://localhost:8080/home-

user");
 verifyNoMoreInteractions(mock);

 driver.quit();
}

Figure 4.3 Automated test case for the test scenario "Authenticator provides
request role when username and password are not valid"

B. Availability

In order to verify security requirements related to

information availability, we followed our method and

conducted automated tests with the aid of the Karate [17] (for

API tests) and Gatling (for loading tests) [18] tools. Our

objective is to evaluate the availability of information of the user

authentication and authorization system.

In the first activity of our method, we create the STPA

findings report. Then, in the subsequent activity, using the

mapping to Gherkin syntax, we use the artifact generated in the

previous activity to create test scenarios.

In this example, we use the UCA: “Authorizer provides

fetch role too early when username is provided and password

is provided" and the Controller Constraint: "Authorizer should

not provide fetch role too early when username is provided and

password is provided". The purpose of this test is to verify

whether the Authorizer is granting system access level before

the authentication process is properly completed. The mapping

for the Gherkin syntax corresponding to this scenario is shown

in Figure 4.4.

Figure 4.4 Example of converting a UCA into a test scenario using Gherkin
syntax

 With the test scenarios already defined, we proceed to the
third activity, using the Karate tool to develop the test cases. An
example of code using Gherkin syntax for the Karate tool can be
seen in Figure 4.5. The purpose of the code for this example is
to describe the expected behavior of the Authorizer controller in
a web system, as the example described in this section.

 Lines 02 to 05 contain global settings applicable to all test
cases. In this snippet, we configure the base URL as

'http://localhost:8080/' and set the read and

connection timeouts (readTimeout and

connectTimeout) limits to 1000 milliseconds.

 The scenario indicates the specific test scenario to be tested

(Lines 06 and 07). From Line 08 to Line 10, the Given clause
establishes the initial context of the test, including defining the

path as 'login' and filling in the form with specific values.

The When clause, in Lines 11 and 12, represents the action to be

performed, that is, navigate to the path 'home-user', that
requires authorization for access.

 Finally, the Then clause, on Line 13, establishes the
expected result of the previous action, indicating that the system

should return an HTTP 401 status code, used to denote
unauthorized authentication.

01

02
03

04

05
06

07

08
09

10

11
12

13

Feature: Authorizer

Background:
 * url ‘http://localhost:8080/’

 * configure readTimeout = 1000

 * configure connectTimeout = 1000
Scenario: Authorizer provides fetch role too early When

username is provided and password is provided

 Given path ‘login’
 And form field username = 'user@email.com'

 And form field password = 'password123'

 When path ‘home-user’
 And method get

 Then status 401

Figure 4.5 Example of converting a UCA into a test scenario using Gherkin
syntax

 In the fourth activity, which involves executing tests, we
implement a program using the Gatling tool. This program is
written in the Scala programming language and its purpose is to
perform the requests defined by the test case. An excerpt from
the program is described in Figure 4.6.

 The code snippet provided is part of a availability of
information testing script using Gatling. It sets up a scenario

called authScenario, in which 10 virtual users are gradually
injected over the course of 5 seconds. Additionally, it specifies

the HTTP configuration defined in httpConf for the test's
HTTP requests.

01

02

03

setUp(

 authScenario.inject(rampUsers(10) during (5

seconds)).protocols(httpConf))
Figure 4.6 Code snippet to perform requests and generate performance data for
the role-based authentication and authorization system.

 Furthermore, the program generates application
performance data, as can be seen in Figure 4.7.

 —---Global Information—--

> request count 10 (OK=10 KO=0)

> min response time 6 (OK=6 KO=-)
> max response time 129 (OK=129 KO=-)

> mean response time 88 (OK=88 KO=-)

> std deviation 50 (OK=50 KO=-)
> response time 50th percentile 125 (OK=125 KO=-)

> response time 75th percentile 127 (OK=127 KO=-)

> response time 95th percentile 129 (OK=129 KO=-)
> response time 99th percentile 129 (OK=129 KO=-)

> mean requests/sec 2 (OK=2 KO=-)
—---Response Time Distribution—---

> t < 800 ms 10 (100%)

> 800 ms < t <1200 ms 8 (0%)
> t > 1200 ms 0 (0%)

> failed 0 (0%)

Figure 4.7 Performance report for a sample of requests of size n = 10

 As a result of the simulations carried out, we generate a
performance report that provides a view of the application's
behavior during the test (Figure 4.7). The ‘request count’
indicates that 10 requests were made, all of which were
successful (OK=10, KO=0). The 'min Response Time'
represents the minimum response time of the application, which
is equal to 6 milliseconds, while the 'max Response Time'
indicates the maximum response time (129 milliseconds). The
'average response time' corresponds to the average response
times, which was 88 milliseconds during the test. The remaining

lines provide information about the distribution of response
times.

 After executing the tests, we analyze the performance report
results (fifth activity) and proceed to the sixth activity (Modify
STPA Analysis) to make the necessary modifications to the
STPA analysis. This allows us to enter the iterative process of
the method, continuing until no more test failures occur.

V. RESULTS

We believe that the adoption of the proposed method
described in this work can assist security analysts in identifying
inconsistencies in the security requirements found in an STPA
analysis. The method provides a sequence of activities that
facilitate the verification of the correctness of the requirements,
which, in turn, contributes to preventing scenarios of losses that
may initially not appear critical, but can prove crucial in the
context of the analyzed system.

The method can be important for the field of security,
especially in a scenario where threats and vulnerabilities are
becoming increasingly complex and subtle to be identified.
Identifying all potential risks and adequately protecting the
system is becoming a challenging task.

 Our method has the potential to assist in verifying the
integrity and completeness of security requirements, as it allows
for a more comprehensive and systematic approach to security
verification.

VI. DISCUSSIONS

In recent years, we have observed a significant increase in
the importance attributed to the security requirements
verification of critical software systems. By incorporating
security verification controls during software development, it is
possible to identify and mitigate potential vulnerabilities and
security risks before the software is implemented.

The early implementation of a security requirements
verification method for critical software systems allows hazards
to be considered from the outset of a software development
project, rather than being addressed later. In this way, potential
hazards or risks that could negatively impact the system's
operation or integrity can be identified and verified.

We believe our approach is more practical and flexible
compared to other similar articles. In the work of Wang and
Wagner [5], the STPA analysis is developed during the approach
and in this method, the analysis is an input artifact, providing
greater flexibility and facilitating its application.

Contrary Hirata et al. [3], our emphasis is on verifying
security requirements, establishing a common language among
those involved to create test scenarios. This approach simplifies
the efficient generation of automated test cases to verify security
requirements more effectively.

Furthermore, utilizing a method for security requirement
verification enables vulnerabilities traceability, which facilitates
the verification and correction of security issues. The method
helps to ensure that the system meets the objectives set by
security analysts and has the potential to prevent potential
failures in critical software systems.

VII. CONCLUSION, RECOMMENDATION, AND

FUTURE WORK

The proposed method has the potential to aid security
analysts in verifying security requirements in a systematic way.

 In future research, it may become promising to explore the
use of the control algorithm as an improved approach. Its
application can extend the verification of security requirements,
identifying potential flaws in this domain more
comprehensively. This perspective may represent an
opportunity to strengthen the integrity of security requirements
in critical software systems.

However, it is important to emphasize that the efficiency and
effectiveness of this method still need to be demonstrated
through additional examples and applications. In particular, we
are interested in evaluating our method with STRIDE [19]
examples.

REFERENCES

1. I. F. Sommerville, "Software Engineering," 10th ed.,

Essex, UK: Pearson Education, 2016.

2. N. G. Leveson and J. P. Thomas, "STPA Handbook,"

Cambridge, MA, USA: Cambridge The MIT Press, 2018.

3. C. M. Hirata and A. M. Ambrosio, "Combining STPA

With CoFI to Generate Requirements and Test Cases for

Safety-Critical System," IEEE Systems Journal, vol. 16,

no. 4, pp. 6635-6646, Dec. 2022.

4. "Cucumber Docs," 2023. Available at:

https://cucumber.io/docs/gherkin. Last access: August 29,

2023.

5. Y. Wang and S. Wagner, "Combining STPA and BDD for

Safety Analysis and Verification in Agile Development: A

Controlled Experiment," in Agile Processes in Software

Engineering and Extreme Programming, J. Garbajosa, X.

Wang, and A. Aguiar (eds.), New York: Springer, 2018,

vol. 314, pp. 37-53.

6. T. Okubo, Y. Kakizaki, T. Kobashi, H. Washizaki, S.

Ogata, H. Kaiya, and N. Yoshioka, "Security and privacy

behavior definition for behavior driven development," in

Product-Focused Software Process Improvement:

PROFES 2014, A. Jedlitschka, P. Kuvaja, M. Kuhrmann,

T. Männistö, J. Münch, and M. Raatikainen (eds.),

Helsinki, Finland: Springer, 2014, vol. 8892, pp. 306-309.

7. M. Alves, D. Drusinsky, and M. Shing, "A practical formal

approach for requirements validation and verification of

dependable systems," in 2011 Fifth Latin-American

Symposium on Dependable Computing Workshops, 2011,

São José dos Campos, New York: IEEE, 2011, pp. 47-51.

8. M. Ghazel, M. Masmoudi, and A. Toguyeni, "Verification

of temporal requirements of complex systems using UML

patterns, application to a railway control example," in 2009

IEEE International Conference on System of Systems

Engineering, 2009, Albuquerque, New York: IEEE, 2009,

pp. 1-6.

9. S. Purkayastha, S. Goyal, T. Phillips, H. Wu, B.

Haakenson, and X. Zou, "Continuous Security through

Integration Testing in an Electronic Health Records

https://cucumber.io/docs/gherkin
https://cucumber.io/docs/gherkin

System," in 2020 International Conference on Software

Security and Assurance (ICSSA), 2020, pp. 26-31.

10. D. Tsoukalas, M. Siavvas, M. Mathioudaki, and D.

Kehagias, "An Ontology-based Approach for Automatic

Specification, Verification, and Validation of Software

Security Requirements: Preliminary Results," in 2021

IEEE 21st International Conference on Software Quality,

Reliability and Security Companion (QRS-C), 2021, pp.

83-91.

11. P. Bourque and R. E. Fairley, "SWEBOK: Guide to the

Software Engineering Body of Knowledge," 4th ed., Los

Alamitos, CA: IEEE Computer Society, 2014.

12. C. Walls, "Spring in Action," 6th ed., Shelter Island, NY:

Manning, 2022.

13. J. F. Smart, "BDD in Action: Behavior-driven

development for the whole software lifecycle," 1st ed.,

Shelter Island, NY: Manning, 2014.

14. C. Tudose, "JUnit in Action," 3rd ed., Shelter Island, NY:

Manning, 2020.

15. B. Garcia, "Hands-On Selenium Webdriver with Java: A

Deep Dive Into the Development of End-To-End Tests,"

1st ed., Sebastopol, California, USA: O'Reilly Media,

2022.

16. "Gauntlt Getting-started," 2023. Available at:

http://gauntlt.org/index.html#getting-started. Access on

July 25, 2023.

17. B. Bischof, "Writing API Tests with Karate: Enhance your

API testing for improved security and performance," 1st

ed., Birmingham: Packt Publishing, 2023.

18. "Gatling Docs," 2023. Available at: https://gatling.io/docs.

Access on August 1, 2023.

19. Microsoft, "Uncover security design flaws using the

STRIDE approach," MSDN Magazine, November 2006.

http://gauntlt.org/index.html#getting-started
http://gauntlt.org/index.html#getting-started
https://gatling.io/docs

